Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bioenerg Biomembr ; 55(2): 137-150, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36853470

RESUMO

Animals suffer hypoxia when their oxygen consumption is larger than the oxygen available. Hypoxia affects the white shrimp Penaeus (Litopenaeus) vannamei, both in their natural habitat and in cultivation farms. Shrimp regulates some enzymes that participate in energy production pathways as a strategy to survive during hypoxia. Glucose-6-phosphatase (G6Pase) is key to maintain blood glucose homeostasis through gluconeogenesis and glycogenolysis. We previously reported a shrimp G6Pase gene (G6Pase1) and in this work, we report a second isoform that we named G6Pase2. The expression of the two isoforms was evaluated in oxygen limited conditions and during silencing of the transcription factor HIF-1. High G6Pase activity was detected in hepatopancreas followed by muscle and gills under good oxygen and feeding conditions. Gene expression of both isoforms was analyzed in normoxia, hypoxia and reoxygenation in hepatopancreas and gills, and in HIF-1-silenced shrimp. In fed shrimp with normal dissolved oxygen (DO) (5.0 mg L- 1 DO) the expression of G6Pase1 was detected in gills, but not in hepatopancreas or muscle, while G6Pase2 expression was undetectable in all three tissues. In hepatopancreas, G6Pase1 is induced at 3 and 48 h of hypoxia, while G6Pase2 is down-regulated in the same time points but in reoxygenation, both due to the knock-down of HIF-1. In gills, only G6Pase1 was detected, and was induced by the silencing of HIF-1 only after 3 h of reoxygenation. Therefore, the expression of the two isoforms appears to be regulated by HIF-1 at transcriptional level in response to oxygen deprivation and subsequent recovery of oxygen levels.


Assuntos
Glucose-6-Fosfatase , Penaeidae , Animais , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Penaeidae/genética , Penaeidae/metabolismo , Hipóxia/metabolismo , Oxigênio/metabolismo , Isoformas de Proteínas/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-35417748

RESUMO

Hypoxic zones are spreading worldwide in marine environments affecting many organisms. Shrimp and other marine crustaceans can withstand environmental hypoxia using several strategies, including the regulation of energy producing metabolic pathways. Pyruvate carboxylase (PC) catalyzes the first reaction of gluconeogenesis to produce oxaloacetate from pyruvate. In mammals, PC also participates in lipogenesis, insulin secretion and other processes, but this enzyme has been scarcely studied in marine invertebrates. In this work, we characterized the gene encoding PC in the white shrimp Litopenaeus vannamei, modelled the protein structure and evaluated its gene expression in hepatopancreas during hypoxia, as well as glucose and lactate concentrations. The PC gene codes for a mitochondrial protein and has 21 coding exons and 4 non-coding exons that generate three transcript variants with differences only in the 5'-UTR. Total PC expression is more abundant in hepatopancreas compared to gills or muscle, indicating tissue-specific expression. Under hypoxic conditions of 1.53 mg/L dissolved oxygen, PC expression is maintained in hepatopancreas, indicating its key role even in energy-limited conditions. Finally, both glucose and lactate concentrations were maintained under hypoxia for 24-48 h in hepatopancreas.


Assuntos
Penaeidae , Piruvato Carboxilase , Sequência de Aminoácidos , Animais , Glucose/metabolismo , Hepatopâncreas/metabolismo , Hipóxia/metabolismo , Lactatos/metabolismo , Mamíferos/metabolismo , Estrutura Molecular , Penaeidae/metabolismo , Piruvato Carboxilase/genética , Piruvato Carboxilase/metabolismo
3.
Genes (Basel) ; 13(2)2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35205224

RESUMO

Glutathione peroxidase 3 (GPx3) is the only extracellular selenoprotein (Sel) that enzymatically reduces H2O2 to H2O and O2. Two GPx3 (CqGPx3) cDNAs were characterized from crayfish Cherax quadricarinatus. The nerve cord CqGPx3a isoform encodes for a preprotein containing an N-terminal signal peptide of 32 amino acid residues, with the mature Sel region of 192 residues and a dispensable phosphorylation domain of 36 residues. In contrast, the pereiopods CqGPx3b codes for a precursor protein with 19 residues in the N-terminal signal peptide, then the mature 184 amino acid residues protein and finally a Pro-rich peptide of 42 residues. CqGPx3 are expressed in cerebral ganglia, pereiopods and nerve cord. CqGPx3a is expressed mainly in cerebral ganglia, antennulae and nerve cord, while CqGPx3b was detected mainly in pereiopods. CqGPx3a expression increases with high temperature and hypoxia; meanwhile, CqGPx3b is not affected. We report the presence and differential expression of GPx3 isoforms in crustacean tissues in normal conditions and under stress for high temperature and hypoxia. The two isoforms are tissue specific and condition specific, which could indicate an important role of CqGPx3a in the central nervous system and CqGPx3b in exposed tissues, both involved in different responses to environmental stressors.


Assuntos
Astacoidea , Selênio , Aminoácidos/genética , Animais , Astacoidea/genética , Astacoidea/metabolismo , Clonagem Molecular , DNA Complementar/genética , Peróxido de Hidrogênio/metabolismo , Hipóxia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sinais Direcionadores de Proteínas/genética , Selênio/metabolismo , Temperatura
4.
J Bioenerg Biomembr ; 53(4): 449-461, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34043143

RESUMO

The white shrimp Penaeus (Litopenaeus) vannamei is the most economically important crustacean species cultivated in the Western Hemisphere. This crustacean shifts its metabolism to survive under extreme environmental conditions such as hypoxia, although for a limited time. Glucose-6-phosphatase (G6Pase) is a key enzyme contributing to maintain blood glucose homeostasis through gluconeogenesis and glycogenolysis. To our knowledge, there are no current detailed studies about cDNA or gene sequences of G6Pase from any crustacean reported. Herein we report the shrimp P. (L.) vannamei cDNA and gene sequences. The gene contains seven exons interrupted by six introns. The deduced amino acid sequence has 35% identity to other homolog proteins, with the catalytic amino acids conserved and phylogenetically close to the corresponding invertebrate homologs. Protein molecular modeling predicted eight transmembrane helices with the catalytic site oriented towards the lumen of the endoplasmic reticulum. G6Pase expression under normoxic conditions was evaluated in hepatopancreas, gills, and muscle and the highest transcript abundance was detected in hepatopancreas. In response to different times of hypoxia, G6Pase mRNA expression did not change in hepatopancreas and became undetectable in muscle; however, in gills, its expression increased after 3 h and 24 h of oxygen limitation, indicating its essential role to maintain glycemic control in these conditions.


Assuntos
Clonagem Molecular/métodos , Brânquias/metabolismo , Gluconeogênese/genética , Glucose-6-Fosfatase/metabolismo , Hepatopâncreas/metabolismo , Animais , Glucose-6-Fosfatase/genética , Penaeidae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...